Vertical-cavity and randomly scattered lasing from different thicknesses of epitaxial ZnO films grown on Y₂O₃-buffered Si (111).

نویسندگان

  • C C Kuo
  • W-R Liu
  • B H Lin
  • W F Hsieh
  • C-H Hsu
  • W C Lee
  • M Hong
  • J Kwo
چکیده

Two different types of lasing modes, vertical Fabry-Perot cavity and random lasing, were observed in ZnO epi-films of different thicknesses grown on Si (111) substrates. Under optical excitation at room temperature by a frequency tripled Nd:YVO₄ laser with wavelength of 355 nm, the lasing thresholds are low due to high crystalline quality of the ZnO epitaxial films, which act as microresonators. For the thick ZnO layer (1,200 nm), its lasing action is originated from the random scattering due to the high density of crack networks developed in the thick ZnO film. However, the low crack density of the thin film (555 nm) fails to provide feedback loops essential for random scattering. Nevertheless, even the lower threshold lasing is achieved by the Fabry-Perot cavity formed by two interfaces of the thin ZnO film. The associated lasing modes of the thin ZnO film can be characterized as the transverse Gaussian modes attributed to the smooth curved surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MOCVD growth of non-epitaxial and epitaxial ZnS thin films

Thin films of ZnS have been deposited by MOCVD on both BaTa206/ITO/glass and Si substrates. Diethylzinc (DEZn) and H2S are used for deposition on substrates heated to the 250-400°C temperature range. The microstructure and properties of ZnS films were studied by X-ray diffractometry (XRD), ultraviolet/visible spectrophotometry (UVS) and scanning electron microscopy (SEM). Films prepared on BaTa...

متن کامل

Control of epitaxial relationships of ZnO/SrTiO3 heterointerfaces by etching the substrate surface

Wurtzite ZnO thin films with different epitaxial relationships are obtained on as-received and etched (001), (011), and (111) SrTiO3 (STO) by metal-organic chemical vapor deposition (MOCVD). ZnO films exhibit nonpolar (1120) orientation with in-plane orientation relationship of <0001>ZnO//<110>STO on as-received (001) STO, and polar c-axis growth with <1100>ZnO//<110>STO on etched (001) STO sub...

متن کامل

Si incorporation in Ti1-xSixN films grown on TiN(001) and (001)-faceted TiN(111) columns

Thin films consisting of TiN nanocrystallites encapsulated in a fully percolated SiNy tissue phase are archetypes for hard and superhard nanocomposites. Here, we investigate metastable SiNy solid solubility in TiN and probe the effects of surface segregation during growth of TiSiN films onto substrates that are either flat TiN(001)/MgO(001) epitaxial buffer layers or TiN(001) facets of length 1...

متن کامل

Ag buffer layer effect on magnetization reversal of epitaxial Co films

Nano-sized Ag(111) islands were first prepared by using molecular beam epitaxy technique on dilutedhydrofluoric acid etched Si(111) substrate. Epitaxial Co films were then grown onto the Ag films at 100 °C to decrease interdiffusion. The Ag buffer layer designed to form isolated islands with {111} sidewalls on the Si(111) substrate, and provided Co films (111) texture growth to study the correl...

متن کامل

Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate

Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2013